• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于神经网络的杉木人工林碳通量影响因素的选择

Factors Selection for Affection of Carbon Flux Based on Artificial Neural Network

摘要对碳循环影响因素的研究是预测碳通量的重要环节,也是研究碳循环的重要基础。利用亚热带地区湖南省会同杉木人工林生态系统国家野外科学观测研究站2008年7-9月的碳通量和环境因子观测数据,采用遗传神经网络模型对碳通量预测因素进行优化选择,并与传统的相关分析方法进行对比分析。结果表明:模型CIV.8(输入参数包括空气温度Ta、光合有效辐射Par、大气CO2浓度ρc、空气相对湿度Rh、风速Ws、土壤温度 Ts)是所有模型中模拟效果最好的。光合有效辐射与碳通量的相关性最强,相关系数是-0.704(P=0.000);降雨量与碳通量的相关性最弱,相关系数是0.002(P=0.854)。最多输入变量或最复杂的神经网络结构并不能得到最好的模型。

更多
广告
  • 浏览1
  • 下载0
广东林业科技

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷