• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于近红外光谱检测和平衡级联稀疏分类的药品鉴别方法

Drug Discrimination Method Based on Near Infrared Reflectance Spectrum and Balance Cascading Sparse Representation Based Classification

摘要近红外光谱检测和模式识别方法相结合,在药品的现场快速无损监督管理中有广阔的应用前景.传统的鉴别方法以最小化错误率为目标,往往忽略了样本数据的类别不平衡性,从而使得少数类样本被多数类样本淹没,降低少数类样本对分类器的影响,使分类结果更加倾向正确识别多数类样本,严重影响鉴别结果.针对药品光谱数据中真假药品类别不平衡问题进行研究,融合平衡级联和稀疏分类方法(SRC),提出一种级联的稀疏分类药品鉴别方法(BC-SRC).文中在多数类样本中选取和少数类数目相同的样本作为训练样本,并在多数类样本中进行多次平行采样使得多数类样本被全部获得过(采样次数为多数类样本数与少数类样本数商的向上取整),最终得到测试样本的多组预测结果,根据得到的多组结果获得最终预测标签.将提出的方法在Matlab 2012a上进行仿真实验,通过三组样本集的实验证明该方法的有效性,实验结果表明该方法优于常用的偏最小二乘(PLS)、极限学习机(ELM)和BP神经网络分类法,特别是在解决类别不平衡问题时,当不平衡因子大于10时,BC-SRC算法分类相对于其他算法性能更好,且稳定性更高.

更多
广告
分类号 TP391
DOI 10.3964/j.issn.1000-0593(2017)02-0435-06
发布时间 2017-05-22
基金项目
国家自然科学基金项目 桂林电子科技大学研究生创新项目 广西物联网技术及产业化推进协同创新中心项目
  • 浏览1
  • 下载0
光谱学与光谱分析

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷