医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于t分布混合模型的点集非刚性配准算法

Point set non-rigid registration using t-distribution mixture model

摘要考虑高斯混合模型(TMM)的点集非刚性配准算法易受异常点和重尾点的影响,提出了基于t分布混合模型的运动一致性非刚性配准算法.通过期望最大化(EM)框架的完整数据定义将高斯混合模型推广为t分布混合模型,使用EM算法最小化参数的条件期望获得非刚性配准参数的闭合解.在EM算法中计算浮动点集各个点的先验权重,减小异常点和重尾点对配准结果的影响;计算浮动点集各个点的自由度,自适应地改变每个点的概率密度分布模型,提高算法的鲁棒性,并避免了异常点水平估计误差对配准结果的影响.在t分布混合模型的条件期望函数中加入点集位移的正则项,使邻近点具有运动一致性(CPD).仿真数据表明,当噪声水平很高时,TMM-CPD仍可以精确配准点集,且误差仅为对比算法的1/10.真实图像的近似椭圆状分布、管状分布和三维点云状分布的点集配准结果表明,TMM-CPD的配准误差仅为对比算法的42.0%、80.1%和77.5%.实验表明,TMM-CPD配准含有重尾点和异常点的点集,具有精度高、鲁棒性好和受重尾点与异常点干扰小等优点.

更多
广告
  • 浏览0
  • 下载0
光学精密工程

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷