基于直线截距直方图的Arimoto熵或Arimoto灰度熵的食品图像分割
Line Intercept Histogram-based Arimoto Entropy or Arimoto Gray Entropy for Food Image Segmentation
摘要食品生产中涉及到的食品种类繁多且必须满足国家相关食品安全标准,为此要求食品图像分割方法必须速度快、准确性高、普适性强.利用基于二维Arimoto熵或二维Arimoto灰度熵的阈值选取方法对食品图像进行分割,算法复杂度高,难以满足实时性要求.针对这一问题,提出基于直线截距直方图的Arimoto熵或Arimoto灰度熵的食品图像分割方法.首先给出直线截距直方图的定义,然后根据此定义建立图像的直线截距直方图,最后计算基于此直线截距直方图的不同灰度级的Arimoto熵或Arimoto灰度熵,当该熵达到最大时,对应的灰度级即为图像的最佳分割阈值.针对此方法,对多种食品图像进行了大量的试验,通过与现有的基于一维和二维Arimoto熵、Arimoto灰度熵的分割方法对比,发现本文方法在综合提升算法速度和改善分割效果上,性能更优.
更多相关知识
- 浏览1
- 被引3
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文