基于机器视觉的猴头菇品质快速无损检测与分级
Rapid Non-destructive Testing and Grading of Hericium erinaceus Based on Machine Vision
摘要传统的猴头菇品质检测与分级主要依靠人工分拣来完成,其主观性强、精度相差大、效率低,浪费了大量人力物力资源.鉴于此,为了实现猴头菇的快速无损等级评估,该研究引入机器视觉技术,提出了一种猴头菇品质的快速无损检测与分级方法,设计一套基于机器视觉的猴头菇品质快速无损检测与智能分级设备,并通过图像处理和软件设计开发一套猴头菇智能快速无损检测分级系统.通过加色法混色模型(RGB)对猴头菇的颜色特征的快速检测与等级的判定;采用图像阈值分割和Canny边缘检测,实现猴头菇完整度的判定;使用最小外接圆法对猴头菇的大小进行实时计算,完成猴头菇直径大小的判别;基于Microsoft Visual Studio 2017平台开发一套猴头菇品质快速无损检测可视化平台.试验证明,基于机器视觉的猴头菇品质快速无损检测与分级系统检测准确率达到97.07%,速度达到人工的5倍多.验证了系统的可靠性和可行性,为食品工业的智能化生产和加工提供了技术支撑,推动了机器视觉技术在食品行业的应用.
更多相关知识
- 浏览5
- 被引8
- 下载2

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文