基于图卷积的自适应特征融合MRI脑肿瘤分割方法
Graph convolution-based adaptive feature fusion method for MRI brain tumor segmentation
摘要针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convo-lutional U-Net,ASGU-Net).以三维U-Net为基础,通过构建图卷积推理模块,捕获额外的远程上下文特征;在编解码器中引入动态蛇形卷积(dynamic snake convolution,DSConv)能更精准地契合肿瘤形态各异的特点,提高边缘特征提取能力,从而有效提升分割精度;在解码器中引入自适应空间特征融合(adaptive spatial feature fusion,ASFF)模块,通过整合多个编码器块捕获的语义信息提升特征融合效果.在公开的BraTS 2019-2021数据集上的评估表明,整个肿瘤、肿瘤核心和增强肿瘤的 Dice值分别为90.70%/90.70%/91.00%、84.90%/84.00%/88.80%和77.30%/77.40%/82.50%,证明了ASGU-Net在脑肿瘤分割任务中的有效性.ASGU-Net可有效解决全局信息捕获不足和特征融合不充分的问题,为脑肿瘤高精度自动化分割提供了参考.
更多相关知识
- 浏览0
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



