• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于表面肌电信号的膝关节角度预测方法

Knee Joint Angle Prediction Method Based on Surface Electromyography Signal

摘要人体关节角度的连续预测对于提高人机协同控制至关重要.为了提高关节角度的预测精度,提出了一种基于特征的卷积神经网络—双向长短期记忆网络(Convolutional Neural Network-Bidirectional long short-term memory network,CNN-BiLSTM)模型并对下肢关节角度进行了连续预测.采集了人体在正常步态、上楼梯运动时下肢的表面肌电信号和膝关节角度,对信号进行预处理,利用主成分分法进行特征值融合,与传统的支持向量机、长短期记忆网络、卷积神经网络等算法预测效果进行对比,结果表明CNN-BiL-STM模型对关节角度的拟合效果最优,所提模型能够更有效地预测不同运动模式下的膝关节角度,在促进人机协作方面具有更好的性能.

更多
广告
分类号 R318TP391
栏目名称 基础·应用研究
DOI 10.3969/j.issn.1673-2103.2024.05.009
发布时间 2024-12-20
基金项目
安徽理工大学环境友好材料与职业健康研究院(芜湖)研发专项 安徽省高校学科(专业)拔尖人才学术支持项目 安徽省高校协同创新计划项目
  • 浏览0
  • 下载0
菏泽学院学报

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷