改进粒子群算法优化最小二乘支持向量机的网络流量混沌预测
Network traffic chaotic predicting based on least squares support vector machine optimized by improved particle swarm optimization algorithm
摘要为了提高网络流量的预测准确性,针对最小二乘支持向量机参数优化方法的缺陷,提出一种改进粒子群算法优化最小二乘支持向量机的网络流量混沌预测模型.首先将最小二乘支持向量机参数作为粒子初始位置,然后通过粒子群之间信息交流、互相协作找到最优参数,并对惯性权重和学习因子进行改进,最后对网络流量数据进行重构,并采用最优参数的最小二乘支持向量机建立网络流量预测模型.实验结果表明,本文模型提高了网络流量的预测精度,并大幅度减少了训练时间,可以满足网络流量在线预测要求.
更多相关知识
- 浏览0
- 被引11
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



