海量医学图像下的病理结果推定数学模型仿真
Mathematical Model Simulation of Pathological Results Presumption Based on Massive Medical Images
摘要依据海量医学图像特征,对现有图像的病理结果进行推定时,由于海量医学图像数据量大,特征之间的关联性及其复杂,传统的算法进行病理结果推定,需要建立较为复杂的关联规则,造成推定计算效率较低,错误率较高.提出以大数据分析为基础的隐马尔科夫医学图像识别与病理结果推定方法.针对待测医学图像,采用双边滤波方法进行去噪处理,在去除图像数据噪声的同时,有效地保留了图像关键边缘的完整性,对边缘特征进行奇异值分解量化,减少不必要冗余特征干扰,根据隐马尔科夫原理计算图像的最大似然值,降低海量医学图像数据的病理结果推定的复杂程度.实验结果表明,利用改进算法进行基于海量医学图像数据的病理结果推定,能够提高计算效率与病理结果推定的准确性,提高推定效率.
更多相关知识
- 浏览0
- 被引1
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文