摘要提出一种能有效分割眼底图像中视网膜血管的监督学习方法,为眼底图中的每个像素点构造一个包括局部特征、形态学特征和Gabor特征在内的39维特征向量,用以判定其是否为血管上的像素.在进行分类计算时,以分类回归树作为弱分类器对样本集分类,然后对AdaBoost分类器进行训练得到强分类器,并由此完成各个像素点的分类判定.基于国际公共数据库DRIVE的实验结果表明,该方法的平均精确度达到0.9607,且敏感度和特异性均优于已有的基于监督学习的方法,适用于眼底图像的计算机辅助定量分析和疾病诊断.
更多相关知识
- 浏览1
- 被引47
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文