基于差分曲率分组混合模型的脑部MRI图像超分辨重建
Super-Resolution Reconstruction of Brain MRI Images Based on Differential Curvature Grouping Mixture Model
摘要核磁共振成像(magnetic resonance imaging,MRI)能够提供丰富的病理信息,在脑损伤的诊断和治疗中具有重要意义,受采样时间和现有医疗设备的限制,临床上很难获得高分辨率的 MRI 图像.为此,提出一种基于差分曲率分组混合模型的超分辨重建方法.首先在梯度特征提取的基础上引入差分曲率算法,进一步检测图像的边缘、斜坡等特征结构,并将特征块分为平滑区域、纹理区域和边缘区域 3 组;然后基于学生t分布混合模型分别学习 3 组特征区域的模型参数;最后选取多个似然概率较大的子分布共同重建高分辨率图像块.在癌症成像档案库数据集上的实验结果表明,在×2,×3和×4超分辨任务下,所提方法的平均峰值信噪比分别为41.36 dB,35.01 dB和31.32 dB,平均结构相似度分别为 0.984 8,0.941 5和 0.879 5;与现有的超分辨重建方法相比,该方法重建的MRI图像纹理细节更丰富、边缘更清晰,并且重建时间更短.
更多相关知识
- 浏览1
- 被引1
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文