医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于稀疏表达的多示例学习目标追踪算法

Multiple Instance Learning Target Tracking Algorithm Based on Sparse Representation

摘要追踪目标在经历较大姿势变化时,会导致追踪目标偏移甚至丢失.为此,提出一种基于稀疏表达的多示例学习目标追踪算法.联合多示例学习与稀疏表达方法,将目标物体的局部稀疏编码作为多示例学习的训练数据,通过学习正负样本的局部稀疏编码获得一个多示例学习的分类器,分类的结果与粒子滤波框架相结合,估计目标在整个视频序列中的运动状态.实验结果表明,该算法稳定性较好,与增量学习追踪算法、范式学习追踪算法和多示例学习追踪算法相比,其中心位置误差率减少30%以上.

更多
广告
  • 浏览0
  • 下载0
计算机工程

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷