• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于编解码器生成对抗网络的CT去噪

CT image denoising using generative adversarial network with residual encoder-decoder generator

摘要针对生成对抗网络在训练中损失函数收敛慢,难以恢复图像细节的问题,提出一种基于编解码器与多尺度损失函数的生成对抗网络模型.使用含残差连接的编解码器作为生成器,该网络易于训练,能够加快对抗损失函数的收敛;引入噪声损失,与使用VGG19模型的感知损失构成多尺度损失函数,使图像在视觉上的纹理细节达到更细致的恢复效果.实验结果表明,与低剂量CT相比,去噪后图像的峰值信噪比提升了8.1%,结构相似性指数提升了4.8%,改进后的网络加快了损失函数收敛,有效改善了生成对抗网络训练困难、损失函数收敛慢、图像细节难以恢复等问题.

更多
广告
分类号 TP391
栏目名称 多媒体技术
DOI 10.16208/j.issn1000-7024.2022.04.022
发布时间 2022-04-28
基金项目
国家自然科学基金 国家自然科学基金 高等学校科技创新基金项目 国家重大科学仪器设备开发专项 山西省应用基础研究基金项目 山西省面上青年基金项目
  • 浏览2
  • 下载0
计算机工程与设计

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷