摘要针对深度神经网络容易遭到对抗样本攻击导致其分类错误的问题,提出一种基于自适应像素去噪的对抗攻击防御方法.通过基于前向导数的重要性计算方法获得像素重要性分数,根据像素重要性分数对多种对抗攻击进行鲁棒性分析,将其分为鲁棒或非鲁棒攻击,制定针对不同对抗攻击的降噪策略;按照降噪策略分别对重要性分数不同的图像像素进行自适应形态学降噪获得像素去噪图像;使用像素重要性分数、像素去噪图像等信息训练自适应像素去噪模型学习上述去噪过程,进行对抗防御.实验结果表明,该防御能在多个数据集与模型上快速且有效地防御各种对抗攻击,确保原始样本的精确分类.
更多相关知识
- 浏览0
- 被引2
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文