基于流形学习和稀疏约束的快速特征提取算法
Fast Feature Extraction Algorithm Based on Manifold Learning and Sparsity Constraints
摘要针对稀疏保持投影算法在特征提取过程中无监督和L1范数优化的计算量较大的问题,提出一种基于流形学习和稀疏约束的快速特征提取算法.首先通过逐类PCA构造级联字典,并基于该字典通过最小二乘法快速学习稀疏保持结构;其次构造用于描述不同子流形距离的局部类间散度函数;然后整合所学习到的稀疏表示信息和局部类间散度信息以达到既考虑判别效率又保持稀疏表示结构的目的;所提算法最终转化为一个求解广义特征值问题.在公共人脸数据库(Yale,ORL和Extended Yale B)中的测试结果验证了该方法的可行性和有效性.
更多相关知识
- 浏览0
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



