医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于联合图像块聚类自适应字典学习的多模态医学图像融合

Multi-modal Medical Image Fusion Based on Joint Patch Clustering of Adaptive Dictionary Learning

摘要针对多模态医学图像融合中过完备自适应字典存在的大量冗余信息会导致图像重建质量不佳的问题,文中提出了基于联合图像块聚类自适应字典学习的多模态医学图像融合方法(JCPD).该方法首先计算图像块的欧氏距离,通过比较设定的阈值和图像块的最小距离来剔除冗余图像块,减少冗余图像块的数量.然后,使用局部调制核回归(SKR)提取图像块的局部梯度信息作为聚类中心,将具有相同局部梯度信息的两种模态的图像块进行联合图像块聚类.在联合图像块聚类的基础上使用改进的K-SVD算法对图像块聚类形成的类簇进行训练得到子字典,并将子字典合并成自适应字典.最后,在自适应字典的作用下用正交匹配追踪算法(OMP)计算得到稀疏表示系数,再使用"2范数最大"的规则融合稀疏系数,之后通过重建得到融合图像.实验表明,与2种基于多尺度变换的方法和6种基于稀疏表示的方法相比,所提方法在保证字典信息的完整性和字典的紧凑性基础上使得融合的图像清晰度更高、对比度更强,便于临床诊断和辅助治疗.

更多
广告
分类号 TP391.41
DOI 10.11896/j.issn.1002-137X.2019.07.036
发布时间 2019-07-29(万方平台首次上网日期,不代表论文的发表时间)
基金项目
  • 浏览1
  • 下载0
计算机科学

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷