• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于张量的正则化多线性回归算法及其应用

Tensor-Based Regularized Multilinear Regression and Its Application

摘要常用的回归算法,如LASSO(least absolute shrinkage and selection operator)算法,是对数据向量化后进行分析处理.然而,数据向量化将破坏数据的原始结构和内在相关性,并且忽略数据的高阶依赖性.与此同时,数据向量化会导致数据维数过高,计算复杂和存储困难.因此,提出了一种基于张量的正则化多线性回归算法(multilinear LASSO,mLASSO).该算法是LASSO算法在张量空间的一个扩展,首先使用加权向量对张量做模乘运算,将张量空间变换到向量空间;然后在该空间上使用LASSO算法对目标值进行回归分析,得到该方向上的加权向量,采用交替迭代算法依次优化各个方向的加权向量;最后,使用各个方向的最优加权向量和张量数据做模乘运算得到预测变量值.算法主要包含以下两个优点:(1)充分利用了数据的结构信息;(2)该算法使用的LASSO算法嵌入了特征选择功能,提高了模型的泛化能力.实验结果表明该方法在多线性数据上表现出了良好的性能.

更多
广告
  • 浏览0
  • 下载0
计算机科学与探索

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷