医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于链接模型的主动半监督社区发现方法

Active semi-supervised community detection method based on link model

摘要链接模型可对网络的社区发现问题建模,相比具有相同目标的对称模型和条件模型,PPL模型处理网络类型更多、社区发现准确率更高.但PPL模型是一个无监督模型,在网络社区结构不清晰时效果不佳,且不能利用易获取的先验信息.为使用尽可能少的先验,获得社区发现链接模型性能较大的提升,提出了一个主动节点先验学习(ANPL)算法,该算法主动选择效用高、易标记的成对约束进行标记,基于标记的约束对自动生成信息量更大的标记节点集合.基于PPL模型设计了一个融合网络拓扑结构和标记节点先验的半监督社区发现(SPPL)模型,并给出模型用于半监督社区发现的参数估计算法.人工网络和实际网络上的实验结果表明,利用ANPL获得的标记节点先验和网络拓扑结构,SPPL模型的社区发现准确率高于无监督PPL模型及当前流行的基于非负矩阵分解(NMF)的半监督社区发现模型.

更多
广告
作者 柴变芳 [1] 王建岭 [2] 许冀伟 [1] 李文斌 [1] 学术成果认领
作者单位 河北地质大学信息工程学院,石家庄,050031 [1] 河北中医学院公共课教学部,石家庄,050200 [2]
分类号 TP181
DOI 10.11772/j.issn.1001-9081.2017.11.3090
发布时间 2017-12-15(万方平台首次上网日期,不代表论文的发表时间)
  • 浏览1
  • 下载0
计算机应用

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷