基于LCA与NSGA-Ⅱ的混合算法解多目标优化问题
A hybrid algorithm based on LCA and NSGA-Ⅱ solving multi-objective optimization problem
摘要针对非支配遗传算法(NSGA-Ⅱ)存在易过早收敛和计算时间长的问题,本文提出一种列队竞争算法(LCA)与非支配排序遗传算法的混合算法(LCA-NSGA-Ⅱ).通过将列队竞争算法引入NSGA-Ⅱ,均衡全局搜索和局部搜索,以解决NSGA-Ⅱ早熟的问题,并利用一种快速排序方法,降低非支配排序的时间复杂度,采用动态的拥挤度计算方法,保持外部存档集的均匀性.将LCA-NSGA-Ⅱ用于经典测试函数的计算,在收敛性、分布性和运算效率方面都取得了比NSGA-Ⅱ更好的效果.最后,在ASPENPLUS与MATLAB集成平台上,用LCA-NSGA-Ⅱ算法以烯烃回收率和能耗为目标优化MTO烯烃分离过程,为实际操作优化提供指导方向.
更多相关知识
- 浏览0
- 被引18
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文