摘要为了提高多维分类的执行效率,同时保持高的预测准确性,提出了一种基于贝叶斯网络的多维分类学习方法。将多维分类问题描述为条件概率分布问题。根据类别向量之间的依赖关系建立了条件树贝叶斯网络模型。最后,根据训练数据集对条件树贝叶斯网络模型的结构和参数进行学习,并提出了一种多维分类预测算法。大量的真实数据集实验表明,提出的方法与当前最好的多维分类算法 MMOC 相比,在保持高准确性的同时将模型的训练时间降低了两个数量级。因此,提出的方法更适用于海量数据的多维分类应用中。
更多相关知识
- 浏览0
- 被引11
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文