• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling

摘要Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients'anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.

更多
广告
作者 Yuan-Peng Zhang [1] Xin-Yun Zhang [2] Yu-Ting Cheng [2] Bing Li [3] Xin-Zhi Teng [4] Jiang Zhang [4] Saikit Lam [4] Ta Zhou [4] Zong-Rui Ma [4] Jia-Bao Sheng [4] Victor C.W.Tam [4] Shara W.Y.Lee [4] Hong Ge [3] Jing Cai [5] 学术成果认领
作者单位 Department of Medical Informatics,Nantong University,Nantong 226001,Jiangsu,China;Department of Health Technology and Informatics,the Hong Kong Polytechnic University,Hong Kong 999077,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518000,Guangdong,China [1] Department of Medical Informatics,Nantong University,Nantong 226001,Jiangsu,China [2] Department of Radiation Oncology,the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital,Zhengzhou 450008,China [3] Department of Health Technology and Informatics,the Hong Kong Polytechnic University,Hong Kong 999077,China [4] Department of Health Technology and Informatics,the Hong Kong Polytechnic University,Hong Kong 999077,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518000,Guangdong,China [5]
栏目名称 REVIEW
DOI 10.1186/s40779-023-00458-8
发布时间 2024-03-27
提交
  • 浏览12
  • 下载1
军事医学研究(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷