• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

What benefit can be obtained from magnetic resonance imaging diagnosis with artificial intelligence in prostate cancer compared with clinical assessments?

摘要The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0-20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.

更多
广告
作者 Li-Tao Zhao [1] Zhen-Yu Liu [2] Wan-Fang Xie [1] Li-Zhi Shao [3] Jian Lu [4] Jie Tian [5] Jian-Gang Liu [6] 学术成果认领
作者单位 School of Engineering Medicine,Beihang University,Beijing 100191,China;School of Biological Science and Medical Engineering,Beihang University,Beijing 100191,China [1] CAS Key Laboratory of Molecular Imaging,Institute of Automation,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100080,China [2] CAS Key Laboratory of Molecular Imaging,Institute of Automation,Beijing 100190,China [3] Department of Urology,Peking University Third Hospital,Peking University,Beijing 100191,China [4] School of Engineering Medicine,Beihang University,Beijing 100191,China;CAS Key Laboratory of Molecular Imaging,Institute of Automation,Beijing 100190,China;Key Laboratory of Big Data-Based Precision Medicine(Beihang University),Ministry of Industry and Information Technology of the People's Republic of China,Beijing 100191,China [5] School of Engineering Medicine,Beihang University,Beijing 100191,China;Key Laboratory of Big Data-Based Precision Medicine(Beihang University),Ministry of Industry and Information Technology of the People's Republic of China,Beijing 100191,China;Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment,Beijing 100029,China [6]
栏目名称 REVIEW
DOI 10.1186/s40779-023-00464-w
发布时间 2024-05-21
提交
  • 浏览6
  • 下载0
军事医学研究(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷