• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

How Many 3D Structures Do We Need to Train a Predictor?

摘要It has been shown that the progress in the determination of membrane protein structure grows exponentially, with approximately the same growth rate as that of the water-soluble proteins. In order to investigate the effect of this, on the perfor-mance of prediction algorithms for both a-helical and β-barrel membrane proteins, we conducted a prospective study based on historical records. We trained separate hidden Markov models with different sized training sets and evaluated their per-formance on topology prediction for the two classes of transmembrane proteins. We show that the existing top-scoring algorithms for predicting the transmem-brahe segments of α-helical membrane proteins perform slightly better than that of β-barrel outer membrane proteins in all measures of accuracy. With the same rationale, a meta-analysis of the performance of the secondary structure predic-tion algorithms indicates that existing algorithmic techniques cannot be further improved by just adding more non-homologous sequences to the training sets. The upper limit for secondary structure prediction is estimated to be no more than 70% and 80% of correctly predicted residues for single sequence based methods and multiple sequence based ones, respectively. Therefore, we should concentrate our efforts on utilizing new techniques for the development of even better scoring predictors.

更多
广告
分类号 Q5
栏目名称
DOI 10.1016/S1672-0229(08)60041-8
发布时间 2010-01-19
提交
  • 浏览105
  • 下载0
基因组蛋白质组与生物信息学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷