医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Regulation of Torpor in the Gray Mouse Lemur:Transcriptional and Translational Controls and Role of AMPK Signaling

摘要The gray mouse lemur (Microcebus murinus) is one of few primate species that is able to enter daily torpor or prolonged hibernation in response to environmental stresses. With an emerg-ing significance to human health research, lemurs present an optimal model for exploring molecular adaptations that regulate primate hypometabolism. A fundamental challenge is how to effectively regulate energy expensive cellular processes (e.g., transcription and translation) during transitions to/from torpor without disrupting cellular homeostasis. One such regulatory mechanism is reversi-ble posttranslational modification of selected protein targets that offers fine cellular control without the energetic burden. This study investigates the role of phosphorylation and/or acetylation in reg-ulating key factors involved in energy homeostasis (AMP-activated protein kinase, or AMPK, sig-naling pathway), mRNA translation (eukaryotic initiation factor 2a or eIF2a, eukaryotic initiation factor 4E or eIF4E, and initiation factor 4E binding protein or 4EBP), and gene transcription (his-tone H3) in six tissues of torpid and aroused gray mouse lemurs. Our results indicated selective tissue-specific changes of these regulatory proteins. The relative level of Thr172-phosphorylated AMPKa was significantly elevated in the heart but reduced in brown adipose tissue during daily torpor, as compared to the aroused lemurs, implicating the regulation of AMPK activity during daily torpor in these tissues. Interestingly, the levels of the phosphorylated eIFs were largely unal-tered between aroused and torpid animals. Phosphorylation and acetylation of histone H3 were examined as a marker for transcriptional regulation. Compared to the aroused lemurs, level of Ser10-phosphorylated histone H3 decreased significantly in white adipose tissue during torpor, sug-gesting global suppression of gene transcription. However, a significant increase in acetyl-histone H3 in the heart of torpid lemurs indicated a possible stimulation of transcriptional activity of this tissue. Overall, our study demonstrates that AMPK signaling and posttranslational regulation of selected proteins may play crucial roles in the control of transcription/translation during daily torpor in mouse lemurs.

更多
广告
作者单位 Institute of Biochemistry&Department of Biology, Carleton University, 0ttawa, 0N K1S 5B6, Canada [1] UMR 7179 Centre National de la Recherche Scientifique, Muse′um National d’Histoire Naturelle, Brunoy 91800, France [2]
DOI 10.1016/j.gpb.2015.03.003
发布时间 2015-07-29(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览17
  • 下载4
基因组蛋白质组与生物信息学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷