医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Hybrid Method Based on Information Gain and Support Vector Machine for Gene Selection in Cancer Classification

摘要It remains a great challenge to achieve sufficient cancer classification accuracy with theentire set of genes, due to the high dimensions, small sample size, and big noise of gene expressiondata. We thus proposed a hybrid gene selection method, Information Gain-Support Vector Machine(IG-SVM) in this study. IG was initially employed to filter irrelevant and redundant genes. Then,further removal of redundant genes was performed using SVM to eliminate the noise in the datasetsmore effectively. Finally, the informative genes selected by IG-SVM served as the input for theLIBSVM classifier. Compared to other related algorithms, IG-SVM showed the highest classificationaccuracy and superior performance as evaluated using five cancer gene expression datasetsbased on a few selected genes. As an example, IG-SVM achieved a classification accuracy of90.32% for colon cancer, which is difficult to be accurately classified, only based on three genesincluding CSRP1, MYL9, and GUCA2B.

更多
广告
提交
  • 浏览14
  • 下载0
基因组蛋白质组与生物信息学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷