医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

iMFP-LG:Identify Novel Multi-functional Peptides Using Protein Language Models and Graph-based Deep Learning

摘要Functional peptides are short amino acid fragments that have a wide range of beneficial functions for living organisms.The majority of previous studies have focused on mono-functional peptides,but an increasing number of multi-functional peptides have been discovered.Although there have been enormous experimental efforts to assay multi-functional peptides,only a small portion of millions of known peptides has been ex-plored.The development of effective and accurate techniques for identifying multi-functional peptides can facilitate their discovery and mecha-nistic understanding.In this study,we presented iMFP-LG,a method for multi-functional peptide identification based on protein language mod-els(pLMs)and graph attention networks(GATs).Our comparative analyses demonstrated that iMFP-LG outperformed the state-of-the-art methods in identifying both multi-functional bioactive peptides and multi-functional therapeutic peptides.The interpretability of iMFP-LG was also illustrated by visualizing attention patterns in pLMs and GATs.Regarding the outstanding performance of iMFP-LG on the identification of multi-functional peptides,we employed iMFP-LG to screen novel peptides with both anti-microbial and anti-cancer functions from millions of known peptides in the UniRef90 database.As a result,eight candidate peptides were identified,among which one candidate was validated to process both anti-bacterial and anti-cancer properties through molecular structure alignment and biological experiments.We anticipate that iMFP-LG can assist in the discovery of multi-functional peptides and contribute to the advancement of peptide drug design.

更多
广告
作者 Jiawei Luo [1] Kejuan Zhao [2] Junjie Chen [1] Caihua Yang [1] Fuchuan Qu [1] Yumeng Liu [3] Xiaopeng Jin [3] Ke Yan [4] Yang Zhang [2] Bin Liu [5] 学术成果认领
作者单位 School of Computer Science and Technology,Harbin Institute of Technology,Shenzhen 518055,China [1] School of Science,Harbin Institute of Technology,Shenzhen 518055,China [2] College of Big Data and Internet,Shenzhen Technology University,Shenzhen 518055,China [3] School of Computer Science and Technology,Beijing Institute of Technology,Beijing 10081,China [4] School of Computer Science and Technology,Beijing Institute of Technology,Beijing 10081,China;Advanced Research Institute of Multidisciplinary Science,Beijing Institute of Technology,Beijing 10081,China [5]
栏目名称
DOI 10.1093/gpbjnl/qzae084
发布时间 2025-05-15(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览1
  • 下载0
基因组蛋白质组与生物信息学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷