• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

不同层数的Mask-RCNN模型自动检测成釉细胞瘤效能的比较

Comparison of Efficacy of Mask-RCNN Models with Different Layers in Automatic Detection of Ameloblastoma

摘要目的:基于人工智能深度学习,比较Mask-RCNN不同层数的ResNet模型在成釉细胞瘤CT图像检测中的效能.方法:回顾性收集2018年4月~2020年8月福建医科大学附属第一医院成釉细胞瘤患者的CT影像数据,按照标准将79名患者纳入研究.经过预处理后,共得到3566张图像,按照8∶1∶1的比例将其随机分为训练集、验证集以及测试集.采用ResNet-18、ResNet-50和ResNet-101模型进行训练,实现肿瘤的自动检测并通过Dice系数、平均精确度AP及检测时间等评价指标进行分析.结果:与ResNet-18及ResNet-50相比,ResNet-101模型自动检测的效果最好,其Dice系数为0.87,平均精确度AP(IOU 0.50∶0.95)为0.74.但该模型所需的检测时间最长,需要0.33 s.结论:不同层数的Mask-RCNN模型均可较好地实现对成釉细胞瘤的自动检测诊断,其中ResNet-101检测效果最好,但相应地需要更长的时间.

更多
广告
分类号 A
栏目名称 口腔肿瘤学研究
DOI 10.13701/j.cnki.kqyxyj.2023.12.012
发布时间 2024-01-08
基金项目
福建省教育厅中青年教师教育科研项目
  • 浏览10
  • 下载3
口腔医学研究

口腔医学研究

2023年39卷12期

1092-1096页

MEDLINEISTICPKUCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷