• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于贝叶斯算法优化的CatBoost矿压显现预测

CatBoost mine pressure appearance prediction based on Bayesian algorithm optimization

摘要通过传统的监测手段获取矿压数据并采用统计学或机器学习算法对矿压进行预测已不能满足矿山智能化发展要求,需要寻求新的方法提升矿压数据监测及矿压预测的准确性和实时性.基于三维相似物理模型试验,搭建分布式光纤监测系统,沿模型走向和高度 2个方向预埋分布式光纤,在模拟工作面开采过程中采集来压数据,并引入光纤布里渊频移平均变化度作为判断是否来压的指标;通过对光纤监测数据进行噪声去除、归一化及相空间重构等预处理,将一维初始监测数据转换为三维数据;使用贝叶斯算法对CatBoost算法进行迭代参数寻优,在达到最大迭代次数后将最优参数组合装载到CatBoost算法中,通过训练得到矿压显现预测模型.结果表明:贝叶斯算法比传统网格搜索法的迭代次数更少、误差更小;与随机森林(RF)、梯度提升决策树(GBDT)和极值梯度提升树(XGBoost)算法相比,CatBoost算法的预测精度更高、泛化能力更强;基于贝叶斯算法优化的CatBoost矿压显现预测模型能准确预测出测试集中的 3次来压,且整体预测趋势与实测值较为吻合,平均绝对误差为0.009 1,均方根误差为0.007 7,决定系数为0.933 9.

更多
广告
  • 浏览0
  • 下载0
工矿自动化

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷