基于多分辨率注意密集网络的肺炎分类识别方法
Pneumonia Classification and Recognition Method Based on Multi-resolution Attention Dense Network
摘要X光片中肺炎存在影像学特征不明显、病灶与周围组织对比不明显、边缘模糊等问题,因此,文中提出基于多分辨率注意密集网络的肺炎分类识别方法.深度融合浅层定位信息与深层语义信息,并构造多分辨率空间注意力门,对不同分辨率的深层信息与浅层信息进行语义式交互增强,在深浅层信息中建立病灶信息的相互依赖关系.此外,设计坐标频率注意力,以方向和位置互补的方式自适应地增强肺炎特征的表达.在ChestXRay2017等5份肺炎X光片数据集上的实验表明,文中网络在肺炎分类识别任务上性能较优,同时还具有公共肺炎数据集上的鲁棒性.
更多相关知识
- 浏览2
- 被引1
- 下载3

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文