多模型融合的时空特征运动想象脑电解码方法
Multi-model fusion temporal-spatial feature motor imagery electroencephalogram decoding method
摘要运动想象脑电(Motor Imagery Electroencephalogram,MI-EEG)已经应用在脑机接口(Brain Computer Interface,BCI)中,能帮助上下肢功能障碍的患者进行康复训练.然而,现有技术对MI-EEG低效的解码性能和对MI-EEG过度依赖预处理的方式限制了 BCI的广泛发展.提出了一种多模型融合的时空特征运动想象脑电解码方法(Multi-model Fusion Temporal-spatial Feature Motor Imagery EEG Decoding Method,MMFTSF).MMFTSF 使用时空卷积网络提取MI-EEG中浅层信息特征,使用多头概率稀疏自注意力机制关注MI-EEG中最具有价值的信息特征,使用时间卷积网络提取MI-EEG高维时间特征,使用带有softmax分类器的全连接层对MI-EEG进行分类,并利用基于卷积的滑动窗口和空间信息增强模块进一步提升MI-EEG解码性能.在公开的BCI竞赛数据集IV-2a上进行验证.实验结果表明,MMFTSF在数据集上达到89.03%的解码准确度,在MI-EEG分类任务中具有理想的分类性能.
更多相关知识
- 浏览5
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文