医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Detection of small bowel tumor in wireless capsule endoscopy images using an adaptive neuro-fuzzy inference system

摘要Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing method for identifying and classifying wireless capsule endoscopic images,and investigate statistical measures to differentiate normal and abnormal images.The proposed technique consists of two main stages,namely,feature extraction and classification.Primarily,32 features incorporating four statistical measures (contrast,correlation,homogeneity and energy) calculated from co-occurrence metrics were computed.Then,mutual information was used to select features with maximal dependence on the target class and with minimal redundancy between features.Finally,a trained classifier,adaptive neuro-fuzzy interface system was implemented to classify endoscopic images into tumor,healthy and unhealthy classes.Classification accuracy of 94.2% was obtained using the proposed pipeline.Such techniques are valuable for accurate detection characterization and interpretation of endoscopic images.

更多
广告
作者单位 Department of Bioengineering, Temple University, Philadelphia, PA19121, USA [1] Department of Medicine, Section of Gastroenterology, School of Medicine, Temple University, Philadelphia, PA 19140,USA [2] Department of Radiation Medicine Engineering,Shahid Beheshti University, Tehran 1983963113, Iran [3] Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983963113, Iran [4]
栏目名称
发布时间 2017-11-16(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览8
  • 下载0
生物医学研究杂志(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷