摘要针对少样本条件下复杂叶片分割精确度不高的问题,提出一种基于数据增强的图像语义分割方法.使用翻转、平移方法对训练集中的图像进行增强扩充,利用VGG19代替原SegNet语义分割模型的VGG16主干网络进行模型训练.实验结果表明,在包含180幅复杂背景叶片的图像数据集上,使用该方法的评价指数MPA和MIOU达到了98.02%和95.79%,相比未使用数据增强的原模型分别提高了9.96%和15.27%.
更多相关知识
- 浏览2
- 被引3
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



