医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于改进3D-DenseNet的胆囊癌诊断模型研究

Study on Diagnostic Model of Gallbladder Carcinoma Based on Improved 3D-DenseNet

摘要为辅助临床诊断胆囊癌,使用深度学习技术,通过改进的3D-DenseNet建立一个基于患者增强CT影像的胆囊癌辅助诊断模型.首先,将患者多张动脉期CT转化为三维影像,利用医生标注的胆囊区域,将三维影像切割出感兴趣区域;然后对传统DenseNet网络进行优化,改进Dropout机制与Softmax损失函数并在输出部分将交叉熵函数替换为Focal-loss以进行不平衡校正,从而建立胆囊癌辅助诊断模型;最后,将测试集结果与金标准进行比较,采用ROC曲线、召回率、准确率评估模型性能.通过训练集不断迭代训练,模型损失函数值逐渐收敛,诊断误差也不断下降,在尝试过多种不同的模型结构后,选取出的最优模型准确率为91.4%,特异度为95.2%,灵敏度为88.0%,精确率为95.8%.基于改进3D-DenseNet的胆囊癌诊断模型使用多张患者CT影像数据提取深度特征,充分利用了医疗检测数据,具有较佳的性能和较高的诊断准确率,可以辅助临床进行胆囊癌诊断.

更多
广告
分类号 TP183
栏目名称
DOI 10.11907/rjdk.212527
发布时间 2022-05-05(万方平台首次上网日期,不代表论文的发表时间)
基金项目
国家自然科学基金(81801797); 国家自然科学基金(82074581); 国家重点研发计划(2020YFC2005801); 国家重点研发计划(2020YFC2005800); 上海市青年科技英才扬帆计划项目(17YF1411700)
  • 浏览1
  • 下载3
软件导刊

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷