医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于多序列脑影像特征的机器学习分类方法

Machine Learning Classification Method Based on Multi-sequence Brain Image Features

摘要为解决现有算法对人脑的白质网络特征集及灰质形态特征集筛选精度不高的问题,通过机器学习方法优化算法,将多序列特征转化为特异性指标,构建脑老化的敏感特异性特征集.先通过单因素方差分析筛选特征,然后基于机器学习分类器分别对特征集中青、老年受试者开展实验,实验数据包含96例正常受试者的脑影像数据(青年组48例,老年组48例)最后利用五折交叉验证法评估不同模型在相应特征集的受试者工作特征曲线(ROC)、曲线下面积(AUC)、分类准确率(ACC)及特异性值(SPE).实验结果表明,所提方法在白质网络特征集及灰质形态特征集的最高分类准确率分别达到70%、74.4%,联合特征集达到90%,证实了所提方法提取的优化特征子集对脑老化具有较高的敏感特异性.

更多
广告
作者 赵文硕 [1] 姚旭峰 [2] 学术成果认领
作者单位 上海理工大学健康科学与工程学院,上海200093 [1] 上海健康医学院医学影像学院,上海201318 [2]
分类号 TP391
栏目名称
DOI 10.11907/rjdk.221325
发布时间 2022-07-04(万方平台首次上网日期,不代表论文的发表时间)
基金项目
国家自然科学基金(61971275)
  • 浏览2
  • 下载0
软件导刊

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷