医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

面向异质性医学图像处理的深度学习算法综述

Review on Deep Learning Algorithms for Heterogeneous Medical Image Processing

摘要近年来深度学习技术在诸多计算机视觉任务上取得了令人瞩目的进步,也让越来越多的研究者尝试将其应用于医学图像处理领域,如面向高通量医学图像(CT、MRI)的解剖结构分割等,旨在为医生提供诊断辅助,提高其阅片效率.由于训练医学图像处理的深度学习模型同样需要大量的标注数据,同一医疗机构的数据往往不能满足需求,而受设备和采集协议的差异的影响,不同医疗机构的数据具有很大的异质性,这导致通过某些医疗机构的数据训练得到模型很难在其他医疗机构的数据上取得可靠的结果.此外,不同的医疗数据在患者个体病情阶段的分布上也往往是十分不均匀的,这同样会降低模型的可靠性.为了减少数据异质性的影响,提高模型的泛化能力,域适应、多站点学习等技术应运而生.其中域适应技术作为迁移学习中的研究热点,旨在将源域上学习的知识迁移到未标记的目标域数据上;多站点学习和数据非独立同分布的联邦学习技术则旨在在多个数据集上学习一个共同的表示,以提高模型的鲁棒性.从域适应、多站点学习和数据非独立同分布的联邦学习技术入手,对近年来的相关方法和相关数据集进行了综述、分类和总结,为相关研究提供参考.

更多
广告
  • 浏览0
  • 下载3
软件学报

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷