• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于深度学习的乳腺钼靶图像分类方法研究进展

Research progress on classification methods for mammogram based on deep learning

摘要钼靶检查是当前临床诊断乳腺肿瘤的常规手段,患者痛苦相对较小、简便易行、分辨率高、可重复性好.为了提高诊断效率,减小误诊风险,针对乳腺钼靶图像开发基于人工智能的计算机辅助诊断系统(computer-aided diagnosis,CAD)显得尤为重要.传统的分类方法需要使用大量的手工特征,而深度学习能够自动从数据中学习特征,避免了传统算法中人工设计、提取特征的复杂性和局限性.我们从感兴趣区域和全图两个方面对近年来基于深度学习的乳腺钼靶图像分类方法研究进展予以综述和展望.调研发现深度学习在乳腺钼靶图像分类方面展示了不错的效果,其中基于深度卷积神经网络的分类方法已经成为当下的热门技术.

更多
广告
作者 包昌宇 [1] 彭俊川 [1] 胡楚婷 [2] 简文静 [2] 王先明 [2] 刘维湘 [1] 学术成果认领
作者单位 深圳大学医学部生物医学工程学院,深圳518055;广东省医学信息检测与超声成像重点实验室,深圳518060;医学超声关键技术国家地方联合工程实验室,深圳518060 [1] 深圳市第二人民医院,深圳大学医学部第一附属医院甲乳外科,深圳518035 [2]
分类号 R318
栏目名称 综述
DOI 10.19529/j.cnki.1672-6278.2020.02.19
发布时间 2020-07-24
基金项目
深圳市科技应用示范项目
  • 浏览217
  • 下载227
生物医学工程研究

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷