摘要针对人工耳蜗在噪声环境下言语感知效果差,以及现有算法降噪能力不足的问题,本研究提出了一种改进的Wave-U-Net模型.通过采取轻量化卷积,引入注意力机制,改进损失函数,优化数据集结构,以提高人工耳蜗的降噪效果.使用短时客观可懂度(short-time objective intelligibility,STOI)、语音质量评估(perceptual evaluation of speech quality,PESQ)、浮点运算次数(floating point operations per second,FLOPs)和参数量(Params)对模型的降噪效果和复杂度进行了评估,分别达到0.81、2.75,0.83 G,1.04 M.实验结果表明,本研究算法在符合人工耳蜗产品规范的基础上,实现了明显的降噪效果,提高了人工耳蜗使用者在复杂噪声环境中的语音感知效果.本研究方法为人工耳蜗算法的改进提供了新的可能,可为听力受损患者提供更好的听觉感受.
更多相关知识
- 浏览10
- 被引1
- 下载5

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



