医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

SeRN:A Two-Stage Framework of Registration for Semi-Supervised Learning for Medical Images

摘要Significant breakthroughs in medical image registration have been achieved using deep neural networks(DNNs).However,DNN-based end-to-end registration methods often require large quantities of data or adequate annotations for training.To leverage the intensity information of abundant unlabeled images,unsupervised registration methods commonly employ intensity-based similarity measures to optimize the network parameters.However,finding a sufficiently robust measure can be challenging for specific registration applications.Weakly supervised registration methods use anatomical labels to estimate the deformation between images.High-level structural information in label images is more reliable and practical for estimating the voxel correspondence of anatomic regions of interest between images,whereas label images are extremely difficult to collect.In this paper,we propose a two-stage semi-supervised learning framework for medical image registration,which consists of unsupervised and weakly supervised registration networks.The proposed semi-supervised learning framework is trained with intensity information from available images,label information from a relatively small number of labeled images and pseudo-label information from unlabeled images.Experimental results on two datasets(cardiac and abdominal images)demonstrate the efficacy and efficiency of this method in intra-and inter-modality medical image registrations,as well as its superior performance when a vast amount of unlabeled data and a small set of annotations are available.Our code is publicly available at https://github.com/jdq818/SeRN.

更多
广告
作者 JIA Dengqiang [1] LUO Xinzhe [2] DING Wangbin [3] HUANG Liqin [3] ZHUANG Xiahai [2] 学术成果认领
作者单位 School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China [1] School of Data Science,Fudan University,Shanghai 200433,China [2] College of Physics and Information Engineering,Fuzhou University,Fuzhou 350117,China [3]
发布时间 2022-09-19(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览1
  • 下载0
上海交通大学学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷