• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Improving Colonoscopy Polyp Detection Rate Using Semi-Supervised Learning

摘要Colorectal cancer is one of the biggest health threats to humans and takes thousands of lives every year.Colonoscopy is the gold standard in clinical practice to inspect the intestinal wall,detect polyps and remove polyps in early stages,preventing polyps from becoming malignant and forming colorectal cancer instances.In recent years,computer-aided polyp detection systems have been widely used in colonoscopies to improve the quality of colonoscopy examination and increase the polyp detection rate.Currently,the most efficient computer-aided systems are built with machine learning methods.However,developing such a computer-aided detection system requires experienced doctors to label a large number of image data from colonoscopy videos,which is extremely time-consuming,laborious and expensive.One possible solution is to adopt a semi-supervised learning,which can build a detection system on a dataset where part of its data is not necessary to be labeled.In this paper,on the basis of state-of-the-art object detection method and semi-supervised learning technique,we design and implement a semi-supervised colonoscopy polyp detection system containing four main steps:running standard supervised training with all labeled data;running inference on unlabeled data to obtain pseudo labels;applying a set of strong augmentation to both unlabeled data and pseudo label;combining labeled data,and unlabeled data with its pseudo labels to retrain the detector.The semi-supervised learning system is evaluated both on public dataset and our original private dataset and proves its effectiveness.Also,the inference speed of the semi-supervised learning system can meet the requirement of real-time operation.

更多
广告
作者 YAO Leyu [1] HE Fan [2] PENG Haixia [3] WANG Xiaofeng [3] ZHOU Lu [3] HUANG Xiaolin [2] 学术成果认领
作者单位 School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China [1] School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Institute of Medical Robotics,Shanghai Jiao Tong University,Shanghai 200240,China [2] Tong Ren Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200336,China [3]
分类号 TP183R574.62
DOI 10.1007/s12204-022-2519-1
发布时间 2023-09-19
提交
  • 浏览1
  • 下载0
上海交通大学学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷