• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Ensemble of Two-Path Capsule Networks for Diagnosis of Turner Syndrome Using Global-Local Facial Images

摘要Turner syndrome(TS)is a chromosomal disorder disease that only affects the growth of female patients.Prompt diagnosis is of high significance for the patients.However,clinical screening methods are time-consuming and cost-expensive.Some researchers used machine learning-based methods to detect TS,the performance of which needed to be improved.Therefore,we propose an ensemble method of two-path capsule networks(CapsNets)for detecting TS based on global-local facial images.Specifically,the TS facial images are preprocessed and segmented into eight local parts under the direction of physicians;then,nine two-path CapsNets are respectively trained using the complete TS facial images and eight local images,in which the few-shot learning is utilized to solve the problem of limited data;finally,a probability-based ensemble method is exploited to combine nine classifiers for the classification of TS.By studying base classifiers,we find two meaningful facial areas are more related to TS patients,i.e.,the parts of eyes and nose.The results demonstrate that the proposed model is effective for the TS classification task,which achieves the highest accuracy of 0.924 1.

更多
广告
作者 LIU Lu [1] 学术成果认领
作者单位 School of Software Engineering,Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China [1]
分类号 TP181R596.1
DOI 10.1007/s12204-022-2491-9
发布时间 2023-09-19
提交
  • 浏览4
  • 下载4
上海交通大学学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷