医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

TshFNA-Examiner:A Nuclei Segmentation and Cancer Assessment Framework for Thyroid Cytology Image

摘要Examining thyroid fine-needle aspiration(FNA)can grade cancer risks,derive prognostic informa-tion,and guide follow-up care or surgery.The digitization of biopsy and deep learning techniques has recently enabled computational pathology.However,there is still lack of systematic diagnostic system for the complicated gigapixel cytopathology images,which can match physician-level basic perception.In this study,we design a deep learning framework,thyroid segmentation and hierarchy fine-needle aspiration(TshFNA)-Examiner to quantita-tively profile the cancer risk of a thyroid FNA image.In the TshFNA-Examiner,cellular-intensive areas strongly correlated with diagnostic medical information are detected by a nuclei segmentation neural network;cell-level image patches are catalogued following The Bethesda System for Reporting Thyroid Cytopathology(TBSRTC)system,by a classification neural network which is further enhanced by leveraging unlabeled data.A cohort of 333 thyroid FNA cases collected from 2019 to 2022 from Ⅰ to Ⅵ is studied,with pixel-wise and image-wise image patches annotated.Empirically,TshFNA-Examiner is evaluated with comprehensive metrics and multiple tasks to demonstrate its superiority to state-of-the-art deep learning approaches.The average performance of cellular area segmentation achieves a Dice of 0.931 and Jaccard index of 0.871.The cancer risk classifier achieves a macro-F1-score of 0.959,macro-AUC of 0.998,and accuracy of 0.959 following TBSRTC.The corresponding metrics can be enhanced to a macro-F1-score of 0.970,macro-AUC of 0.999,and accuracy of 0.970 by leveraging informative unlabeled data.In clinical practice,TshFNA-Examiner can help cytologists to visualize the output of deep learning networks in a convenient way to facilitate making the final decision.

更多
广告
作者 柯晶 朱俊超 杨鑫 张浩林 孙宇翔 王嘉怡 鲁亦舟 沈逸卿 刘晟 蒋伏松 黄琴 学术成果认领
DOI 10.1007/s12204-024-2743-y
发布时间 2025-03-21(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览1
  • 下载0
上海交通大学学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷