Electroencephalogram Signal Classification and Artifact Removal with Deep Networks and Adaptive Thresholding
摘要Physiological signals such as electroencephalogram(EEG)signals are often corrupted by artifacts during the acquisition and processing.Some of these artifacts may deteriorate the essential properties of the signal that pertains to meaningful information.Most of these artifacts occur due to the involuntary movements or actions the human does during the acquisition process.So,it is recommended to eliminate these artifacts with signal processing approaches.This paper presents two mechanisms of classification and elimination of artifacts.In the first step,a customized deep network is employed to classify clean EEG signals and artifact-included signals.The classification is performed at the feature level,where common space pattern features are extracted with convolutional layers,and these features are later classified with a support vector machine classifier.In the second stage of the work,the artifact signals are decomposed with empirical mode decomposition,and they are then eliminated with the proposed adaptive thresholding mechanism where the threshold value changes for every intrinsic mode decomposition in the iterative mechanism.
更多相关知识
- 浏览0
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



