摘要以金沙江某水电站工程实例,应用交叉验证和网格搜索优化支持向量机(SVM)模型建立岩体质量分级模型,选取岩石单轴抗压强度(Rc)、岩石质量指标(RQD)、岩体风化程度、节理组数(Jn)、节理粗糙系数(Jr)、节理蚀变系数(Ja)、地下水状态7个参数作为输入参数构建立分类模型,对坝区复杂的岩体结构进行质量分级.通过与RMR(岩体地质力学分类)和BP神经网络分类法对比,表明:支持向量机具有高非线性映射能力,对岩体分类识别能力极强,具有较好的准确度和稳定性,能够满足实际的工程需要.
更多相关知识
- 浏览0
- 被引15
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



