医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于深度学习的人体腰椎MRI图像自动分割

Automatic segmentation of human lumbar spine MRI images based on deep learning

摘要腰椎间盘病变是导致下背部疼痛的主要原因之一,而腰椎磁共振成像(MRI)图像在其诊断中发挥了关键作用.本研究引入了 一种基于深度学习的自动分割方法,旨在增强椎间盘形态结构的识别和分割,从而减轻医疗专业人员手动分割所带来的不便和不一致性.我们采用了著名的分割网络Mask-Rcnn(Mask Region-based Conv-olutional Neural Network),该网络以其卓越的特征提取能力、出色的目标检测性能和精确的实例分割结果而闻名,因此成为最佳选择.通过利用PyTorch中的神经网络模型库,我们重构了数据集接口并微调了输出层参数,以更好地适应识别和分割腰椎间盘的任务.本研究使用了包含1545张腰椎MRI图像的公开数据集,每张图像都标注了椎间盘等结构.在对数据集进行预处理以保留有关椎间盘的标注后,我们随机选择了 450张图像进行测试,其余用于训练.在经过20个训练周期后,我们实现了 97.7%的平均精度和98.6%的平均召回率,96.9%的DICE系数.本研究强调了基于深度学习的自动分割方法在显著改善腰椎MRI图像中椎间盘的识别和分割方面的潜力.这种方法在临床应用中具有巨大前景,可能提高疾病诊断的准确性和效率,减轻了医疗专业人员的负担.

更多
广告
  • 浏览10
  • 下载5
生命科学仪器

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷