医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

结合太赫兹光谱与机器学习的小麦霉变程度判别

Detection of Mildew Degree of Wheat Using Terahertz Spectroscopy and Machine Learning

摘要为快速、准确地判断小麦籽粒的霉变程度,研究基于太赫兹时域光谱技术,结合支持向量机(support vector machine,SVM)、随机森林(random forest,RF)和极限学习机(extreme learning machine,ELM)的霉变小麦定性分析方法.首先,将小麦籽粒分为正常、轻度霉变、中度霉变和重度霉变4类,利用CCT-1800太赫兹时域光谱仪获取小麦样本在0.1~4.0 THz波段的光谱数据.对比采用不同光谱预处理方法对判别结果的影响后,使用主成分分析、线性判别分析(linear discriminant analysis,LDA)、t分布随机近邻嵌入3种方法对光谱数据进行降维,结果表明LDA的降维效果最好.最后,构建基于SVM、RF和ELM的小麦霉变程度判别模型,结果显示SVM的判别效果最好,当核函数选择多项式核、误差惩罚系数为1时,判别准确率高达98.61%,预测集均方根误差值为0.1429.本研究表明利用太赫兹光谱技术可实现小麦霉变程度的准确检测,为食品安全和粮食贮藏检测提供一种检测手段.

更多
广告
  • 浏览4
  • 下载0
食品科学

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷