• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

不同成熟度猕猴桃糖度紫外/可见光谱检测

Detecting of Sugar Content of Different Maturity of Kiwifruits by UV/Vis Spectroscopy

摘要猕猴桃糖度是判别其成熟度的关键指标,为构建预测不同成熟度猕猴桃糖度的最优模型.利用紫外/可见(200 nm~1 000 nm)光谱采集系统获取不同成熟期“贵长”猕猴桃的反射光谱,比较3种光谱预处理方法[一阶导数、多元散射校正、标准正态变换(standard normal variation,SNV)]对光谱的预处理效果,应用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)从预处理后的全光谱中选取特征光谱,基于全光谱和特征光谱分别构建预测猕猴桃糖度的误差反向传播(error back propagation,BP)网络模型.结果 表明:SNV预处理效果最优,采用CARS从1 024个全波段中选取了29个特征波长,提升了预测模型的检测效率,构建的SNV-CARS-BP模型的预测性能最优,其预测集决定系数Rp2=0.901,均方根误差(root mean squares errors for prediction,RMSEP)为0.643%,剩余预测偏差(residual predictive deviation,RPD)为3.217.研究表明,采用紫外/可见光谱技术和BP网络检测猕猴桃糖度是可行的,SNV-CARS-BP模型最优.

更多
广告
  • 浏览4
  • 下载1
食品研究与开发

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷