基于机器视觉的海鲜花螺分类研究
RESEARCH AND EXPERIMENTAL STUDY ON THE CLASSIFICATION OF SEAFOOD SNAILS BASED ON MACHINE VISION
摘要针对目前人工分选海鲜花螺劳动强度大、人工成本高的问题,研究提出一种DPO-SVM海鲜花螺公母分类模型.通过灰度共生矩阵分析提取海鲜花螺外壳间隔纹理特征量,采用SVM作为公母分类模型基体,对不同纹理特征量组合进行分类效果对比,得出使用能量、熵、对比度3种特征量分类效果最好的结论.针对SVM优化问题,以PSO和WOA算法为基础提出DPO算法对SVM的重要参数c、g进行优化;对DPO-SVM性能进行测试,将测试结果与SVM、PSO-SVM、WOA-SVM测试结果对比.相比于其他3种SVM模型,DPO-SVM分类准确率大幅度提升,相比于SVM,分类总准确率由85%上升至100%,上升了15%;DPO算法提高了单种群优化算法的寻优性能,相比于PSO算法,DPO算法将最佳适应度从95.26提升至98.68,提升幅度为3.47%.此外,达到最佳适应度的迭代次数由14次减少至6次,下降57.14%,显著优化了收敛速度.研究结果可为自动分拣装置中海鲜花螺公母分类提供技术参考.
更多相关知识
- 浏览4
- 被引1
- 下载2

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



