医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于多色彩空间的YOLOv5松枯死树检测方法

Dead pine detection by multi-color space based YOLOv5

摘要[目的]针对在松枯死树监测实践中,从无人机航拍RGB影像中自动识别松枯死树漏检率高的问题,提出了一种生产应用场景下基于多色彩空间的YOLOv5 松枯死树高精度自动识别新方法.[方法]利用无人机采集大面积松材线虫病发生林分的RGB图像,用Pix4Dmapper软件拼接,用LabelImg开源软件建立VOC格式的松枯死树数据集,分别用Faster R-CNN、YOLOv3、YOLOv4、YOLOv5、SSD和EfficientDet等 6 种基于深度学习的目标检测算法对数据集进行训练和测试,以精确率、召回率、平均准确率以及F1分数作为评价指标筛选出最优目标检测算法;然后将采集的RGB图像转换成LAB和HSV色彩空间图像,再将这 3 个色彩空间的图像分别用最优目标检测算法进行训练,得到目标在每个色彩空间的边界框,使用非极大值抑制算法对这些边界框进行处理,得到最优边界框实现松枯死树自动识别.[结果]6 种算法均取得良好效果,其中YOLOv5模型为最优算法,其精准率、平均查准率和F1 分数在 6 种算法中均最高,分别达到 97.58%、82.40%和 0.85.通过 3 个色彩空间融合后,反映漏检情况的召回率由 74.54%提高到 98.99%,平均准确率提升至 98.39%.[结论]基于多色彩空间的YOLOv5 模型能够显著提高从无人机航拍RGB影像中检测松枯死树的精度,为松枯死树监测提供了有力工具,也有助于松材线虫病的防治.

更多
广告
  • 浏览4
  • 下载0
生物安全学报

生物安全学报

2023年32卷3期

282-289页

ISTICPKUCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷