运用PDB中的同源信息提高NetTurnP的蛋白质β转角预测精度
Using Homology Information From PDB to Improve The Accuracy of Protein β-turn Prediction by NetTurnP
摘要β转角作为一种蛋白质二级结构类型在蛋白质折叠、蛋白质稳定性、分子识别等方面具有重要作用.现有的β转角预测方法,没有将PDB等结构数据库中先前存在的同源序列的结构信息映射到待预测的蛋白质序列上.PDB存储的结构已超过70000,因此对一条新确定的序列,有较大可能性从PDB中找到其同源序列.本文融合PDB中提取的同源结构信息(对每一待测序列,仅使用先于该序列存储于PDB中的同源信息)与NetTurnP预测,提出了一种新的β转角预测方法BTMapping,在经典的BT426数据集和本文构建的数据集EVA937上,以马修斯相关系数表示的预测精度分别为0.56、0.52,而仅使用NetTurnP的为0.50、0.46,以Qtotal表示的预测精度分别为81.4%、80.4%,而仅使用NetTurnP的为78.2%、77.3%.结果证实同源结构信息结合先进的β转角预测器如NetTurnP有助于改进β转角识别.BTMapping程序及相关数据集可从http://www.bio530.weebly.com获得.
更多相关知识
- 浏览101
- 被引2
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文