医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

利用机器学习提高M.jannaschii酪氨酰tRNA合成酶底物特异性分子建模预测的准确度

Integration of Machine Learning Improves The Prediction Accuracy of Molecular Modelling for M.jannaschii Tyrosyl-tRNA Synthetase Substrate Specificity

摘要设计结合不同化学结构底物的酶结合袋是一个巨大的挑战.传统的湿实验要筛选成千上万甚至上百万个突变体来寻找对特定配体结合的突变体,此过程需要耗费大量的时间和资源.为了加快筛选过程,我们提出了一种新的工作流程,将分子建模和数据驱动的机器学习方法相结合,生成具有高富集率的突变文库,用于高效筛选能识别特定底物的蛋白质突变体.M.jannaschii酪氨酰tRNA合成酶(Mj.TyrRS)能识别特定的非天然氨基酸并催化形成氨酰tRNA,其不同的突变体能够识别不同结构的非天然氨基酸,并且已经有了许多报道和数据的积累,因此我们使用TyrRS作为一个例子来进行此筛选流程的概念验证.基于已知的多个Mj.TyrRS的晶体结构及分子建模的结果,我们发现D158G/P是影响残基158~163位α螺旋蛋白骨架变化的关键突变.我们的模拟结果表明,在含有687个突变体的测试数据中,与随机突变相比,分子建模和打分函数计算排序可以将目标突变体的富集率提高2倍,而使用已知突变体和对应的非天然氨基酸数据训练的机器学习模型进行校准后,筛选富集率可提高11倍.这种分子建模和机器学习相结合的计算和筛选流程非常有助于Mj.TyrRS的底物特异性设计,可以大大减少湿实验的时间和成本.此外,这种新方法在蛋白质计算设计领域具有广泛的应用前景.

更多
广告
  • 浏览7
  • 下载0
生物化学与生物物理进展

生物化学与生物物理进展

2021年48卷10期

1214-1232页

SCIISTICPKUCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷